Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum.

نویسندگان

  • Samuel C Wassmer
  • Valéry Combes
  • Francisco J Candal
  • Irène Juhan-Vague
  • Georges E Grau
چکیده

Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin alpha (LT-alpha) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-alpha-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platelets Alter Gene Expression Profile in Human Brain Endothelial Cells in an In Vitro Model of Cerebral Malaria

Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM) in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC) and human brain microvascular endothelial cells (HBEC) and potentiate HBEC apoptosis. ...

متن کامل

In vitro study of parasite elimination and endothelial protection by curcumin: adjunctive therapy for cerebral malaria

Plasmodium falciparum infection can abruptly progress to severe malaria and cerebral malaria. Despite the current efficiency of antimalarial drugs in killing parasites, no specific effective treatment has been found for cerebral malaria. Thus, a new strategy targeting both parasite elimination and endothelial cell protection is urgently needed in this field. In this study, we determined whether...

متن کامل

Plasmodium falciparum Uses gC1qR/HABP1/p32 as a Receptor to Bind to Vascular Endothelium and for Platelet-Mediated Clumping

The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitr...

متن کامل

Parasitemia and Hematological Alterations in Malaria: A Study from the Highly Affected Zones

Background& Objectives: Inspite of intensive worldwide efforts to reduce its transmission, malaria remains the most serious and widespread protozoal infection of humans. It is a protozoan disease transmitted by the bite of infected female anopheles mosquito. Malaria has long featured prominently in the grey area between parasitology and hematology. This study has been...

متن کامل

Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings.

During Plasmodium falciparum malaria infections, von Willebrand factor (VWF) levels are elevated, postmortem studies show platelets colocalized with sequestered infected erythrocytes (IEs) at brain microvascular sites, whereas in vitro studies have demonstrated platelet-mediated IE adhesion to tumor necrosis factor-activated brain endothelium via a bridging mechanism. This current study demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 74 1  شماره 

صفحات  -

تاریخ انتشار 2006